250 research outputs found

    Hybridizing Cartesian Genetic Programming and Harmony Search for Adaptive Feature Construction in Supervised Learning Problems

    Get PDF
    The advent of the so-called Big Data paradigm has motivated a flurry of research aimed at enhancing machine learning models by following very di- verse approaches. In this context this work focuses on the automatic con- struction of features in supervised learning problems, which differs from the conventional selection of features in that new characteristics with enhanced predictive power are inferred from the original dataset. In particular this manuscript proposes a new iterative feature construction approach based on a self-learning meta-heuristic algorithm (Harmony Search) and a solution encoding strategy (correspondingly, Cartesian Genetic Programming) suited to represent combinations of features by means of constant-length solution vectors. The proposed feature construction algorithm, coined as Adaptive Cartesian Harmony Search (ACHS), incorporates modifications that allow exploiting the estimated predictive importance of intermediate solutions and, ultimately, attaining better convergence rate in its iterative learning proce- dure. The performance of the proposed ACHS scheme is assessed and com- pared to that rendered by the state of the art in a toy example and three practical use cases from the literature. The excellent performance figures obtained in these problems shed light on the widespread applicability of the proposed scheme to supervised learning with legacy datasets composed by already refined characteristics

    Positive Psychology: Supervisor Leadership in Organizational Citizenship Behaviors in Nurses

    Get PDF
    Introduction: In nursing, identifying factors encouraging positive work attitudes is ex-tremely important since a nurse’s performance directly impacts the quality of the care they provide, and, therefore, their patients’ health. Objective: The main objective of this research is to analyze whether the supervisor–nurse relationship is positively correlated with a nurse’s organizational citizenship behaviors. Thus, we established a main hypothesis as follows: the quality of the supervi-sor–nurse interpersonal relationship is positively related to the job satisfaction of the nurse, controlled by moderating the effects of psychological empowerment, the perceived organizational sup-port, and leader–leader exchange. Methodology: This is a cross-sectional descriptive study with individuals as the units of analysis. The population studied comprised all the nurses and supervisors working in nine public hospitals in the autonomous community of Aragon (Spain). The sample con-sisted of 2541 nurses, 192 supervisors, and 2500 paired dyads. Self-report questionnaires were used to ensure workers’ anonymity. The dependent variable was the nurse’s organizational citizenship behaviors; the main independent variable was the supervisor’s leadership; the moderating variables were the nurse’s empowerment, the organizational support the nurse perceived, and the quality of the supervisor–superior relationship. Results: Empirical evidence demonstrates that the quality of the supervisor–nurse relationship is positively correlated with organizational citizenship behaviors. The results also confirm the moderating effect of nurses’ empowerment and of the organizational support they perceive. Discussion: Our research shows how important it is for organizations to es-tablish management practices promoting high-quality nurse–supervisor relationships; thus, hospital management should monitor both the supervisors’ performance and leadership. Conclusions: The quality of the relationship the supervisor establishes with their nurses is vitally important since it is a necessary requirement for beneficial results for the organization as a result of citizenship behavior practice

    Alterations to Dendritic Spine Morphology, but Not Dendrite Patterning, of Cortical Projection Neurons in Tc1 and Ts1Rhr Mouse Models of Down Syndrome

    Get PDF
    Down Syndrome (DS) is a highly prevalent developmental disorder, affecting 1/700 births. Intellectual disability, which affects learning and memory, is present in all cases and is reflected by below average IQ. We sought to determine whether defective morphology and connectivity in neurons of the cerebral cortex may underlie the cognitive deficits that have been described in two mouse models of DS, the Tc1 and Ts1Rhr mouse lines. We utilised in utero electroporation to label a cohort of future upper layer projection neurons in the cerebral cortex of developing mouse embryos with GFP, and then examined neuronal positioning and morphology in early adulthood, which revealed no alterations in cortical layer position or morphology in either Tc1 or Ts1Rhr mouse cortex. The number of dendrites, as well as dendrite length and branching was normal in both DS models, compared with wildtype controls. The sites of projection neuron synaptic inputs, dendritic spines, were analysed in Tc1 and Ts1Rhr cortex at three weeks and three months after birth, and significant changes in spine morphology were observed in both mouse lines. Ts1Rhr mice had significantly fewer thin spines at three weeks of age. At three months of age Tc1 mice had significantly fewer mushroom spines - the morphology associated with established synaptic inputs and learning and memory. The decrease in mushroom spines was accompanied by a significant increase in the number of stubby spines. This data suggests that dendritic spine abnormalities may be a more important contributor to cognitive deficits in DS models, rather than overall neuronal architecture defects

    Raman vibrational dynamics of hydrated ions in the low-frequency spectral region

    Get PDF
    The hydration structure of ions in aqueous environments can have a significant influence on their chemical and biological properties. Due to its inherent dynamical character, determination of the hydration shell around dissolved ions has proved challenging, mainly so for cations such as sodium and potassium which form diffuse and dynamic hydrating structures. The low frequency polarized Raman spectrum, as retrieved by time resolved isotropic optical Kerr effect measurements, is sensitive to structural fluctuations and can reveal information about ion-water interactions through their Raman active vibrational modes. Here we study a series of mixtures of sodium, potassium and lithium hydroxide solutions by changing cation concentration pairwise (namely, sodium/potassium or sodium/lithium) while keeping constant the hydroxide concentration. The hydroxide-water hydrogen bond vibration, which produces a well-defined isotropic Raman mode, appears at higher frequencies from the cation-water Raman active vibrations. In addition to previously reported lithium-water low frequency vibrations, clear spectral features could be resolved from the concentration studies and assigned to sodium-water hydration shell vibrations. However, potassium related low frequency spectral features remain elusive. The same method was applied to mixtures of the same cations with a halide anion (chloride) in order to rule out any specific features related to the dissolved hydroxide anion. Comparison between halide and hydroxide measurements confirmed the presence of the cation modes and further revealed a low frequency spectral feature related to hydroxide induced changes in water polarizability

    Alterations to Dendritic Spine Morphology, but Not Dendrite Patterning, of Cortical Projection Neurons in Tc1 and Ts1Rhr Mouse Models of Down Syndrome

    Get PDF
    Down Syndrome (DS) is a highly prevalent developmental disorder, affecting 1/700 births. Intellectual disability, which affects learning and memory, is present in all cases and is reflected by below average IQ. We sought to determine whether defective morphology and connectivity in neurons of the cerebral cortex may underlie the cognitive deficits that have been described in two mouse models of DS, the Tc1 and Ts1Rhr mouse lines. We utilised in utero electroporation to label a cohort of future upper layer projection neurons in the cerebral cortex of developing mouse embryos with GFP, and then examined neuronal positioning and morphology in early adulthood, which revealed no alterations in cortical layer position or morphology in either Tc1 or Ts1Rhr mouse cortex. The number of dendrites, as well as dendrite length and branching was normal in both DS models, compared with wildtype controls. The sites of projection neuron synaptic inputs, dendritic spines, were analysed in Tc1 and Ts1Rhr cortex at three weeks and three months after birth, and significant changes in spine morphology were observed in both mouse lines. Ts1Rhr mice had significantly fewer thin spines at three weeks of age. At three months of age Tc1 mice had significantly fewer mushroom spines - the morphology associated with established synaptic inputs and learning and memory. The decrease in mushroom spines was accompanied by a significant increase in the number of stubby spines. This data suggests that dendritic spine abnormalities may be a more important contributor to cognitive deficits in DS models, rather than overall neuronal architecture defects

    Noggin null allele mice exhibit a microform of holoprosencephaly

    Get PDF
    Holoprosencephaly (HPE) is a heterogeneous craniofacial and neural developmental anomaly characterized in its most severe form by the failure of the forebrain to divide. In humans, HPE is associated with disruption of Sonic hedgehog and Nodal signaling pathways, but the role of other signaling pathways has not yet been determined. In this study, we analyzed mice which, due to the lack of the Bmp antagonist Noggin, exhibit elevated Bmp signaling. Noggin−/− mice exhibited a solitary median maxillary incisor that developed from a single dental placode, early midfacial narrowing as well as abnormalities in the developing hyoid bone, pituitary gland and vomeronasal organ. In Noggin−/− mice, the expression domains of Shh, as well as the Shh target genes Ptch1 and Gli1, were reduced in the frontonasal region at key stages of early facial development. Using E10.5 facial cultures, we show that excessive BMP4 results in reduced Fgf8 and Ptch1 expression. These data suggest that increased Bmp signaling in Noggin−/− mice results in downregulation of the hedgehog pathway at a critical stage when the midline craniofacial structures are developing, which leads to a phenotype consistent with a microform of HP

    Targeted glycoproteomic identification of cancer cell glycosylation

    Get PDF
    GalMBP is a fragment of serum mannose-binding protein that has been modified to create a probe for galactose-containing ligands. Glycan array screening demonstrated that the carbohydrate-recognition domain of GalMBP selectively binds common groups of tumor-associated glycans, including Lewis-type structures and T antigen, suggesting that engineered glycan-binding proteins such as GalMBP represent novel tools for the characterization of glycoproteins bearing tumor-associated glycans. Blotting of cell extracts and membranes from MCF7 breast cancer cells with radiolabeled GalMBP was used to demonstrate that it binds to a selected set of high molecular weight glycoproteins that could be purified from MCF7 cells on an affinity column constructed with GalMBP. Proteomic and glycomic analysis of these glycoproteins by mass spectrometry showed that they are forms of CD98hc that bear glycans displaying heavily fucosylated termini, including Lewisx and Lewisy structures. The pool of ligands was found to include the target ligands for anti-CD15 antibodies, which are commonly used to detect Lewisx antigen on tumors, and for the endothelial scavenger receptor C-type lectin, which may be involved in tumor metastasis through interactions with this antigen. A survey of additional breast cancer cell lines reveals that there is wide variation in the types of glycosylation that lead to binding of GalMBP. Higher levels of binding are associated either with the presence of outer-arm fucosylated structures carried on a variety of different cell surface glycoproteins or with the presence of high levels of the mucin MUC1 bearing T antigen

    Structure and dynamics of nanoconfined water and aqueous solutions

    Full text link
    This review is devoted to discussing recent progress on the structure, thermodynamic, reactivity, and dynamics of water and aqueous systems confined within different types of nanopores, synthetic and biological. Currently, this is a branch of water science that has attracted enormous attention of researchers from different fields interested to extend the understanding of the anomalous properties of bulk water to the nanoscopic domain. From a fundamental perspective, the interactions of water and solutes with a confining surface dramatically modify the liquid's structure and, consequently, both its thermodynamical and dynamical behaviors, breaking the validity of the classical thermodynamic and phenomenological description of the transport properties of aqueous systems. Additionally, man-made nanopores and porous materials have emerged as promising solutions to challenging problems such as water purification, biosensing, nanofluidic logic and gating, and energy storage and conversion, while aquaporin, ion channels, and nuclear pore complex nanopores regulate many biological functions such as the conduction of water, the generation of action potentials, and the storage of genetic material. In this work, the more recent experimental and molecular simulations advances in this exciting and rapidly evolving field will be reported and critically discussed

    Lewis X antigen mediates adhesion of human breast carcinoma cells to activated endothelium. Possible involvement of the endothelial scavenger receptor C-Type lectin

    Get PDF
    Lewis x (Lex, CD15), also known as SSEA-1 (stage specific embryonic antigen-1), is a trisaccharide with the structure Galβ(1–4)Fucα(1–3)GlcNAc, which is expressed on glycoconjugates in human polymorphonuclear granulocytes and various tumors such as colon and breast carcinoma. We have investigated the role of Lex in the adhesion of MCF-7 human breast cancer cells and PMN to human umbilical endothelial cells (HUVEC) and the effects of two different anti-Lex mAbs (FC-2.15 and MCS-1) on this adhesion. We also analyzed the cytolysis of Lex+-cells induced by anti-Lex mAbs and complement when cells were adhered to the endothelium, and the effect of these antibodies on HUVEC. The results indicate that MCF-7 cells can bind to HUVEC, and that MCS-1 but not FC-2.15 mAb inhibit this interaction. Both mAbs can efficiently lyse MCF-7 cells bound to HUVEC in the presence of complement without damaging endothelial cells. We also found a Lex-dependent PMN interaction with HUVEC. Although both anti-Lex mAbs lysed PMN in suspension and adhered to HUVEC, PMN aggregation was only induced by mAb FC-2.15. Blotting studies revealed that the endothelial scavenger receptor C-type lectin (SRCL), which binds Lex-trisaccharide, interacts with specific glycoproteins of Mr␣∼␣28 kD and 10 kD from MCF-7 cells. The interaction between Lex+-cancer cells and vascular endothelium is a potential target for cancer treatment.Fil: Elola, Maria Teresa. Fundación Instituto Leloir; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Capurro, Mariana Isabel. University of Toronto; CanadáFil: Barrio, Maria Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para la Investigación, Docencia y Prevención del Cáncer; ArgentinaFil: Coombs, Peter J.. Imperial College London; Reino UnidoFil: Taylor, Maureen E.. Imperial College London; Reino UnidoFil: Drickamer, Kurt. Imperial College London; Reino UnidoFil: Mordoh, Jose. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para la Investigación, Docencia y Prevención del Cáncer; Argentin
    corecore